10: Electrostatics in solution

February 15, 2010

John Hart
ajohnh@umich.edu
http://www.umich.edu/~ajohnh
Announcements

- Video assignment discussion/questions
 - Example: http://vimeo.com/3315489
- PS2 due next Monday (Feb/22)
Recap: small-scale flows

- Wall friction grows nonlinearly as flow scale (e.g., pipe diameter) decreases
- However, when wall friction dominates, we must consider the nature of molecule-wall interactions, called **slip**
- We define flow regimes by Knudsen number,
 \[\text{Kn} = \frac{\lambda}{L_o} \text{ Gases, } l = \text{mean free path} \]
 \[\text{Kn} = \frac{b}{L_o} \text{ Liquids, } b = \text{slip length} \]

- We can superimpose slip upon a no-slip model

\[
Q_{i,s} = -\pi \frac{dp}{dz} \left(\frac{R^4}{8\mu} + \frac{sR^3}{2\mu} \right)
\]
What’s the molecular origin of slip?

- Fluid-fluid interactions are stronger than fluid-wall interactions (e.g., hydrophobicity).
- Surface roughness traps gas molecules dissolved in the liquid, creating a lubrication layer at the wall. Here, what happens at high Re?
- Molecules “hop” between minimum-energy sites in the wall lattice; therefore slip is a rate process and slip length depends on temperature.

Measuring gas flows in microchannels

They measured 10^{-12} kg/s
10^{-4} cm3/s
Fig. 10. Helium mass flow for 1.33-μm channel (95% confidence intervals indicated). The solid curve is the solution to (21), assuming full tangential momentum accommodation, and the dashed curve is the solution to (21) setting $\kappa = 0$ (no-slip solution).

Flow through CNTs

Fig. 1. (A) Schematic of the fabrication process. Step 1: microscale pit formation (by KOH etching). Step 2: catalyst deposition/annealing. Step 3: nanotube growth. Step 4: gap filling with low-pressure chemical vapor–deposited Si$_3$N$_4$. Step 5: membrane area definition (by XeF$_2$ isotropic Si etching). Step 6: silicon nitride etch to expose nanotubes and remove catalyst nanoparticles (by Ar ion milling); the membrane is still impermeable at this step. Step 7: nanotube uncapping (reactive ion etching); the membrane begins to exhibit gas permeability at this step. (B) SEM cross section of the as-grown DWNTs (CNTs). (C) SEM cross section of the membrane, illustrating the excellent gap filling by silicon nitride. (D) Photograph of the open membrane areas; inset shows a close-up of one membrane. (E) Photograph of the membrane chip that contains 89 open windows; each window is 50 µm in diameter.

Flow through CNTs

Fig. 4. Air (red) and water (blue) permeability as measured for three DWNT membranes (DW#1, 2, and 3) and a polycarbonate membrane (PC). Despite considerably smaller pore sizes, the permeabilities for all DWNT membranes greatly exceed those of the polycarbonate membrane.

<table>
<thead>
<tr>
<th>Membrane</th>
<th>Pore diameter (nm)</th>
<th>Pore density (cm⁻²)</th>
<th>Thickness (μm)</th>
<th>Enhancement over Knudsen model* (minimum)</th>
<th>Enhancement over no-slip, hydrodynamic flow† (minimum)</th>
<th>Calculated minimum slip length‡ (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DWNT 1</td>
<td>1.3 to 2.0</td>
<td>≤0.25 × 10¹²</td>
<td>2.0</td>
<td>40 to 120</td>
<td>1500 to 8400</td>
<td>380 to 1400</td>
</tr>
<tr>
<td>DWNT 2</td>
<td>1.3 to 2.0</td>
<td>≤0.25 × 10¹²</td>
<td>3.0</td>
<td>20 to 80</td>
<td>680 to 3800</td>
<td>170 to 600</td>
</tr>
<tr>
<td>DWNT 3</td>
<td>1.3 to 2.0</td>
<td>≤0.25 × 10¹²</td>
<td>2.8</td>
<td>16 to 60</td>
<td>560 to 3100</td>
<td>140 to 500</td>
</tr>
<tr>
<td>Polycarbonate</td>
<td>15</td>
<td>6 × 10⁸</td>
<td>6.0</td>
<td>2.1</td>
<td>3.7</td>
<td>5.1</td>
</tr>
</tbody>
</table>

*From (18). †From (26). ‡From (29).
Extreme slip flow through CNTs

Table 1 | Pressure-driven flow through aligned MWCNT membrane

<table>
<thead>
<tr>
<th>Liquid</th>
<th>Initial permeability*</th>
<th>Observed flow velocity†</th>
<th>Expected flow velocity†</th>
<th>Slip length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>0.58</td>
<td>25</td>
<td>0.00057</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>1.01</td>
<td>43.9</td>
<td>0.00057</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>0.72</td>
<td>9.5</td>
<td>0.00015</td>
<td>39</td>
</tr>
<tr>
<td>Ethanol</td>
<td>0.35</td>
<td>4.5</td>
<td>0.00014</td>
<td>28</td>
</tr>
<tr>
<td>iso-Propanol</td>
<td>0.088</td>
<td>1.12</td>
<td>0.00077</td>
<td>13</td>
</tr>
<tr>
<td>Hexane</td>
<td>0.44</td>
<td>5.6</td>
<td>0.00052</td>
<td>9.5</td>
</tr>
<tr>
<td>Decane</td>
<td>0.053</td>
<td>0.67</td>
<td>0.00017</td>
<td>3.4</td>
</tr>
</tbody>
</table>

MWCNT, multiwalled carbon nanotube. For details of methods, see supplementary information. *Units, cm3 per cm2 min bar. †Flow velocities in cm s$^{-1}$ at 1 bar. Expected flow velocity is that predicted from conventional flow.

Importance of gas damping in MEMS: DMD micromirrors
Mirror dynamics at various ambient pressures

FIGURE 7.2. Dynamic response of the DMD^{TM} mirrors subject to a step pulse under various air pressures. (The data were obtained by Dr. Larry Hornbeck (1988); Courtesy of Texas Instruments)
Today’s agenda

- How surfaces become charged in solution
- Modeling the electrical “double layer”
- Competition between electrostatic repulsion and VDW attraction forces (DLVO theory) → stability vs. coagulation
- Nanofluidic transistors
- Electrophoresis
Today’s readings (ctools)

Nominal:
- Hiemenz and Rajagopalan, excerpt on “The electrical double layer and double-layer interactions”, from Principles of Colloid and Surface Chemistry
- Karnik et al., “Electrostatic control of ions and molecules in nanofluidic transistors”

Extras:
- Israelachvili, excerpt on “Electrostatic forces between surfaces in liquids”, from Intermolecular and Surface Forces
 → same topics as Hiemenz above
- Bouzigues et al., “Nanofluidics in the Debye layer at hydrophilic and hydrophobic surfaces”
 → measurements of slip length on charged surfaces
Surfaces become charged in solution –WHY?

- Ionization or dissociation of surface groups, e.g., -COOH \rightarrow -COO$^-$ + H$^+$
- Adsorption of ions from solution

\rightarrow Charged surfaces are balanced by counterions in solution, so electrical neutrality is preserved
\rightarrow Some counterions adsorb to the surface, and others are distributed near the surface within the double layer
\rightarrow This is very important for interactions between nanostructures in solution
Ion concentration profiles

Israelachvili, Mulvaney.
total electric neutrality
planar, isolated, constant potential

\[\nabla^2 \psi = -\frac{\rho^4}{\varepsilon} \]

permittivity

\[\varepsilon = \varepsilon_r \varepsilon_0 \]

charge density

\[\frac{e}{H^3} \]

\[\rho^4(x, y, z) \]

constant

\[\frac{d^2 \psi}{dx^2} = -\frac{\rho^4(x)}{\varepsilon} \]

\[\text{Bcs: } \psi(0) = \psi_0, \quad \psi(\infty) = 0 \]
Ions in solution obey Boltzmann distribution

\[
\frac{n_i}{n_i, \infty} = \exp \left(\frac{-z_i e \psi}{k_b T} \right)
\]

charge electron

thermal energy \(\frac{1}{2} \)

valence of ion

\[\text{Na}^+, z = 1\]
\[\text{Na}^+, z = 2\]

\[\rho^+ = z_i \epsilon n_i\]

\[\text{Na}^+, \text{Cl}^-\]

Multiple ions add charge densities

\[
\rho^+ = \sum z_i \epsilon n_i = \sum z_i \epsilon n_i, \infty \exp \left(\frac{-z_i e \psi}{k_b T} \right)
\]

up concentration in bulk
Poisson / Boltzmann eqn.

\[\frac{d^2 \psi}{dx^2} = -\frac{e}{\varepsilon} \sum z_i n_i,\infty \exp \left\{ \frac{-z_i e \psi}{k_b T} \right\} \]

\[\text{if } z_i e \psi \ll k_b T, \quad \frac{k_b T}{e} e 29 e k = 25.7 \text{ MV} \]

"low surface potential"

\[\frac{d^2 \psi}{dx^2} = \left(\frac{e^2}{\varepsilon k_b T} \right) \sum z_i^2 n_i,\infty \psi \]

\[k^{-1} \text{ Debye length} \]

\[\text{"debye layer thickness"} \]

\[k^{-1} = \left(\frac{e^2}{\varepsilon k_b T} \right) \sum z_i^2 n_i,\infty, \quad \frac{d^2 \psi}{dx^2} = k^2 \psi \quad [\text{nm}] \]

\[\psi = \psi_0 e^{-kx}, \quad \gamma = \gamma_0 e^{-kx} \]
\[K^{-1} = 3.04 \text{ nm}^{-1} \]

Unit conversion:

\[n_i = 1000 \, M_i \, N_A \]

\[\text{ions/m}^3 = \left(\frac{L}{M^3} \right) \left(\text{mol/L} \right) \left(\text{ions/mol} \right) \]

\[K = \left[\left(\frac{1000 \, e^2 \, N_A}{k_B T} \right) \left(\sum i^2 \, M_i \right) \right]^{1/2} \]
Effect of electrolyte concentration and valence (Debye-Huckel approximation)
Comparison of double layer models

Exact solution (Gouy-Chapman)

Large Ψ_0

Debye-Huckel approximation

0.01M solution of 1:1 electrolyte

Hiemenz and Rajagopalan.
Limiting solutions for small (spherical) and large (locally planar) particles

Hiemenz and Rajagopalan.

<table>
<thead>
<tr>
<th>Small κa</th>
<th>Large κa</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\psi(r) = \psi_0 \frac{a}{r} \exp[-\kappa(r-a)]$</td>
<td>$\psi(x) = \psi_0 \exp(-\kappa x)$</td>
</tr>
<tr>
<td>$\nabla^2 \psi = \frac{2zn^\infty e}{\varepsilon_r \varepsilon_0} \sinh \left(\frac{e\psi}{kT} \right)$</td>
<td>$\tanh \left(\frac{ze\psi(x)}{4kT} \right) = \tanh \left(\frac{ze\psi_0}{4kT} \right) \exp(-\kappa x)$</td>
</tr>
</tbody>
</table>

where $\kappa^2 = \frac{2z^2 e^2 n^\infty}{\varepsilon_r \varepsilon_0 kT}$
Repulsion between overlapping layers

Hiemenz and Rajagopalan.
\[F = 0 \]
\[F_x = -\frac{dp}{dx} \]
\[F_{el} = -\rho^* \frac{d\psi}{dx} \]
\[F_x + F_{el} = 0 \]
\[\frac{dp}{dx} + \rho^* \frac{d\psi}{dx} = 0 \]
\[\frac{d^2\psi}{dx^2} = -\frac{e}{\varepsilon} \left(\frac{d\psi}{dx} \right) \left(\frac{d^2\psi}{dx^2} \right) \]
\[\frac{d}{dx} \left(p - \frac{\varepsilon}{2} \left(\frac{d\psi}{dx} \right)^2 \right) = 0 \]
\[\frac{d}{dx} \left(\frac{1}{2} \frac{d}{dx} \left(\frac{d\psi}{dx} \right)^2 \right) = 0 \]
\[= \text{constant} \]
\[F_K = 64 k_b T n_\infty \Phi_0^2 \exp(-K_h) \]

\[\Phi_0 = \left(\frac{\Delta - 1}{\Delta + 1} \right) \]

\[\Delta = \exp\left(\frac{2eV}{2k_b T} \right) \]

\[K \propto n_\infty^{-1/2} \]

\[F_K = c_1 n_\infty \exp\left(-c_2 n_\infty^{1/2}\right) \]

\[\Delta \text{ separation} \]

\[\text{Gouy-Chapman solution} \]

\[1:1 \text{ electrolyte} \]

\[\uparrow n_\infty \]

\[\downarrow \text{dominate} \]
\[V = \int_{0}^{\infty} dV = \int_{0}^{\infty} -F_{R}(h) \, dh \]

Energy interaction

\[U(h) = \frac{64 k_{B} T \eta_{o} \beta_{o}^{2}}{E_{S}} k^{-1} \exp(-h k) \]

Total interaction energy: \[U_{tot} = U_{ES} + U_{vdw} \]

"Equilibrium": \[\frac{dU_{tot}}{dD} = 0 \]

©2010 | A.J. Hart | 29
Stabilization of colloids: DLVO theory

FIGURE 2.24 Electrostatic stabilization of metal colloids. Van der Waals attraction and electrostatic repulsion compete with each other.27
Net interaction energy governs stability

Fig. 12.12. Schematic energy versus distance profiles of DLVO interaction. (a) Surfaces repel strongly; small colloidal particles remain ‘stable’. (b) Surfaces come into stable equilibrium at secondary minimum if it is deep enough; colloids remain ‘kinetically’ stable. (c) Surfaces come into secondary minimum; colloids coagulate slowly. (d) The ‘critical coagulation concentration’. Surfaces may remain in secondary minimum or adhere; colloids coagulate rapidly. (e) Surfaces and colloids coalesce rapidly.
a) Strong long-range repulsion, fully dispersed
 - highly-charged surface in dilute electrolyte; long Debye length
b) Kinetically stable at secondary minimum or fully dispersed
 - higher electrolyte concentration than (a)
c) Slow aggregation
 - low surface charge density
d) Rapid coagulation
e) Effectively no repulsion
Example: interaction between a pair of Au particles

FIGURE 5.4 Plot of the interaction energy between two spherical gold particles in aqueous solution as a function of the particle separation, for several particle radii. Hamaker constant $= 25 \times 10^{-20} \text{ J}$, $I = 1 \text{ mM}$, $\psi_0 = 0.10 \text{ V}$, $a = 1.0 \text{ nm, } 3.0 \text{ nm, and } 10.0 \text{ nm}$, Debye length $= 10 \text{ nm}$. Note that the secondary minimum is negligible for nanoparticles, but becomes important above 10 nm.
Example: interaction between a pair of Au particles

FIGURE 5.5 Plot of the interaction energy between two spherical gold particles in aqueous solution as a function of the particle separation for several surface potentials. Hamaker constant $= 25 \times 10^{-20}$ J, $I = 10$ mM, $a = 10$ nm, Debye length = 3 nm. Note that a zeta potential, $|\zeta| > 50$ mV, is necessary for colloid stability because of the high Hamaker constant.
Zeta potential is typically measured

Think about slip..
Overlapping double layers in a nanogap

Figure 1: Schematic diagram and equivalent circuits of conventional electrode polarization (a) & (b) and nanogap electrodes (c) & (d).

Figure 5: Electric potential between two electrodes for various channel width; the concentration of solution is 0.1mM of 1:1 electrolyte.
Nanofluidic transistors

Electrophoresis: placing particles in gaps

- Motion is diffusive (Brownian) far from gap
- Substrate-particle repulsion dominates at low V
- “Spherical” DEP region grows and dominates at high V
- EP-induced oscillation only important at low frequencies

$V = 1.5 \text{ V} \rightarrow 2\text{ V} \rightarrow 3\text{ V}$

$g = 30 \text{ nm} \rightarrow 80 \text{ nm} \rightarrow 125 \text{ nm}$

Dielectrophoresis for positioning CNTs

Electric field-directed growth of CNTs

(a) Poly-Si

(b) Poly-Si

(c) Poly-Si

(d) Poly-Si

Quartz

Alignment force vs. thermal vibration