NM - Self-assembly in solution

- Formation of aggregates ("micelles")

Consider * amphiphilic * molecules (Greek root = "both + friendliness")

\[
\text{ex. } \quad \begin{array}{c}
\text{hydrophilic} \\
\text{hydrophobic}
\end{array}
\]

(in H2O, hydrophobic ends = in core)

So let's consider a solution of amphiphiles, or * generally any polymer * (monomer = one part in assembly of many parts)

Define \(\chi_N \) = dimensionless molar fraction of components (monomers) in solution

as the \(N \)th aggregate. So the concentration of the \(N \)th aggregate is

\[
c_N = \frac{\chi_N}{N}
\]

Total molar fraction of monomers in solution:

\[
c = \chi_1 + \chi_2 + \chi_3 \ldots \chi_N = \sum_{n=1}^{N} \chi_n
\]
in solution, assume we have aggregates of 1, 2, ... N monomers each.

The chemical potential \(\mu \) of all components must be equal,

\[
\mu = \mu^0 + \frac{kT}{N} \ln \left(\frac{N_m}{N} \right) = \text{constant} = \mu^0 + kT \ln \left(\frac{k_1}{N} \right)
\]

mean \(\mu \) of an aggregation of 'state' \(N \) interaction energy per particle in the aggregate

we can derive this from the law of mass action between an aggregate of 'state' \(N \) and monomers (state 1)

\[
N \cdot \mu^0 \xrightarrow{k_1} \frac{N_m}{N} \xrightarrow{k_N} N \cdot \mu^0
\]

rate of association = \(k_1 \cdot k_a \cdot X_i \)

rate of dissociation = \(k_N \cdot X_m = k_d \cdot X_m \frac{N}{N} \)

\[
\frac{d[X]}{dt} = k(T) [A]^N [B]^N
\]

\[
k(T) = A e^{-\frac{E_a}{RT}}
\]

see "chemical equilibrium" on wikipedia
In equilibrium, rates of association and dissociation must be equal.

\[k_a X_1^N = k_d X_N \]

\[\Rightarrow K = \frac{k_a}{k_d} = \left(\frac{X_N}{X_1^N}\right) = \exp\left(\frac{-N\left(M_N^0 - M_1^0\right)}{k_B T}\right) \]

Log of both sides:

\[\ln\left(\frac{X_N}{X_1^N}\right) = N \ln X_1^N + \frac{-N\left(M_N^0 - M_1^0\right)}{k_B T} \]

\[\frac{1}{N} \ln\left(\frac{X_N}{X_1^N}\right) = \frac{\ln X_1^N}{(k_B T)^{-1}} + \frac{M_1^0}{(k_B T)^{-1}} \]

Same as stated earlier.

Generalize between states N and M.

\[m_N^0 + \frac{\ln\left(\frac{X_N}{X_M}\right)}{M(k_B T)^{-1}} = m_M^0 + \frac{\ln\left(\frac{X_M}{X_N}\right)}{M(k_B T)^{-1}} \]

Solve for \(X_N = f\left(\frac{X_M}{X_N}\right) \), relating state N to M.

\[X_N = N\left(\frac{X_M}{M}\exp\left(M\left(M_N^0 - M_1^0\right)/k_B T\right)\right)^{N/M} \]
and if \(M = 1 \)

\[
X_N = N \left\{ X_1 \exp \left(\frac{\mu_i^0 - \mu_N^0}{k_B T} \right) \right\}^N
\]

\[
\sum_{m=1}^{\infty} c = \sum_{m=1}^{\infty} \frac{X_N}{X_1}
\]

Correctly describes the aggregation states of the system.

Using this model, can we tell when will aggregates form?

When there is a difference in the cohesive energies of the monomers in their dispersed and aggregated states.

If all experience the same interaction with their surroundings, molecules in different sized aggregates

\[
\mu_i^0 = \mu_{i-1}^0 = \mu_N^0
\]

Our previous result simplifies to \(X_N = N X_1^N \)

Since \(X_1 < 1 \), \(X_N < X_1 \) \(\Rightarrow \) Most molecules are monomers, \(N = 1 \) state

Then for large stable aggregates, we need

\[
\mu_N^0 < \mu_i^0 \text{ for some value of } N
\]
if $\mu_N^0(N)$ increases with N, viz.

then $x_N \ll x_1$ aggregation is even less probable

$= x_N(N)$ is always a distribution function

let's see what it looks like for some key forces and shapes

(i) rods, 1 chains

$\text{bond energy} = \alpha k_b T$

for a N length chain, $N\mu_N^0 = -(N-1)\alpha k_b T$

$\mu_N^0 = -\alpha k_b T + \frac{\alpha k_b T}{N}$

$= \mu_0^0$ relative state to free molecule with bond

$\Rightarrow \mu_N^0 = \mu_0^0 + \frac{\alpha k_b T}{N}$
(2) sticks, \(N \propto \pi R^2 \)
\# of unbound molecules (in edge) \(\propto 2\pi R \propto N^{1/2} \)

\[\mu_N = \mu^0 + \frac{\alpha kT}{N^{1/2}} \]

(3) spheres, \(N \propto R^2 \)
\# of unbound molecules \(\propto \pi R^2 \propto N^{2/3} \)

\[\mu_N = \mu^0 + \frac{\alpha kT}{N^{2/3}} \]

\[\mu_N = \mu^0 + \frac{\alpha kT}{N^{2/3}} \]

\[N \mu^0 + \frac{4\pi R^2 \delta}{3} \approx \frac{N}{3} \delta \]

rearrange

\[\mu_N = \mu^0 + \frac{\delta}{N^{2/3}} \]

\[\delta \approx \frac{\delta}{N^{2/3}} \]

\[\alpha = \frac{\frac{4\pi R^2 \delta}{N^{2/3}}}{kT} \]
at which concentration will aggregates form?

\[\mu_N^* = \mu_m^* + \frac{\alpha kT}{N^p}, \quad p = \text{dimentionless constant} \]

\[X_N = N \left(x_1 \exp \left(\frac{\mu_m^* - \mu_N^*}{kT} \right) \right) \]

\[\frac{\mu_1^* - \mu_m^*}{kT} = \alpha \left(1 - \frac{1}{N^p} \right) \quad (1) \]

To relabel \(X_1 \) to \(X_N \) as before, and substituting \((*)\) there,

\[X_N = N \left(x_1 \exp \left(\alpha \left(1 - \frac{1}{N^p} \right) \right) \right)^N \approx N \left(x_1 e^\alpha \right)^N \]

\[\text{a.g. for spheres, } X_N = \left(x_1 e^\alpha \right)^N e^{-kN} \]

at low \(X_1 \) concentrations such that \(x_1 e^\alpha \ll 1 \), or more precisely \(x_i e^\alpha < N \)

Then \(k_N = k_{N-1} \cdot x_1 \cdot x_2 \ldots \cdot x_i \)

most molecules are monomers in solution.

and \(x_i \approx C \)

when will this change? — well, we can't here

\[k_N > 1 \]
we cannot have $X_N > 1$, or $X_i > 1$ for that matter

so, returning to X_N as $F(N)$

$$X_1 \text{ cannot exceed } \exp\left(-\frac{(\mu_i - \mu_N)}{k_B T} \right), \text{ else } X_N > 1$$

therefore critical micelle concentration $K_{c,mic}$

$$K_{c,mic} = \exp\left(-\frac{V_i^0 - \mu_i}{k_B T} \right)$$

$$= \exp(-\alpha (1 - \frac{1}{N^p})) \approx e^{-\alpha}$$

if spheres, recall $\mu_N^0 - \mu_i^0 = \frac{\kappa k_B T}{N^{1/3}} - \alpha k_B T$

$$\mu_i^0 - \mu_N^0 = \kappa k_B T \left(1 - \frac{1}{N^{1/3}} \right)$$
\[\mu^{\circ} - \mu^* = \alpha k_b T \left(1 - \frac{1}{N^{1/3}} \right) \]

\[\chi_N = N \left\{ \exp \left(\kappa \left(1 - \frac{1}{N^{1/3}} \right) \right) \right\}^N \]

\[\chi_N = N \kappa_N e^{-\kappa_N N^{1/3}} \]

\[e^{\kappa_i} = 1 \Rightarrow \chi_N \approx Ne^{-\kappa N^{1/3}} \]

If \(\alpha > 0 \), then \(\chi_N \) decreases with \(N \) below \(\text{cmc} \).

\[\text{leads to a large aggregate in solution, which forms rapidly} \]

\[\text{phase separation, like oil and water, above the \(\text{cmc} \)} \]

However, some systems lead to a particular size distribution, rather than simply phase separating.

Now, what if

\[\Delta N = N - M \]

expands about \(M \):

\[\frac{\mu^N - \mu^M}{M} = \Lambda (\Delta N)^2 \]

(particular form)

\[\chi_N = N \left\{ \frac{\kappa M}{N^M} \exp \left(\frac{-M \Lambda (\Delta N)^2 k_b T}{1} \right) \right\}^{N/M} \]

Gaussian distribution is \(\chi \exp \left(-\frac{(x-\bar{x})^2}{2\sigma^2} \right) \)

becomes an aggregate of certain size is stable,

\(\text{non-symmetric interactions} \)
Now we can plot the distribution,

\[KN \]

or can also are better care.

\[N \]

So using standard gaussian form, \(\Delta N = x - \bar{x} = N - N \)

\[2\sigma^2 = \frac{K_B T}{N \Lambda} \]

\[\sigma = \sqrt{\frac{K_B T}{2N \Lambda}} \sim \text{order of aggregation} \]

* More shape/curvature effects to be explored later.