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Announcements @
= Please fill out the info sheet if you are new L ‘

®» Enrollment limit raised —overrides not needed

= |f you’re not on the ctools site (ME599-002), tell me and |
will add you

" Prerequisites and grading

= Literature review = topic summary report, details TBA

= Literature searching/archiving —extra session?
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Today’s agenda '

= Classification (taxonomy) of nanoscale structures L

= Examples of scaling: surface area and surface stress
= Nanoclusters: magic numbers

= Structure of carbon nanotubes (CNTSs)
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Today’s readings @
Nominal: (on ctools) " B
* Teo and Sloane, Magic Numbers in Polygonal and Polyhedral

Clusters —need to know concepts only

= Charlier, Structure of Carbon Nanotubes —will use it on PS1
= Atomistix, Periodic Table of Carbon Nanotubes —for reference

Extras: (on ctools)

= Roduner, excerpt on Bulk and Interface
= Park, Types of Nanomaterials (section 3)
= Smalley, Great Balls of Carbon

Background for today:

= Crystal structures:
http://en.wikipedia.org/wiki/Crystal structure

= \Vector math: dot products, cross products
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Shibuya district, Tokyo, July 2006




Circles from history:
building structures from a plane
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Osirian temple in Abydos Egypt, ¢.2000 BC Leonardo DaVinci, c.1498 AD
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The platonic solids

Cube Star Octahedron Icosahedron Dodecahedron
Tetrahedron

in crystal structures

more at http://en.wikipedia.org/wiki/Platonic_solid ©2010 | A.J. Hart | 7




Bravais lattices*: 14 arrangements for all m
crystalline materials " K

un |t Primative Body-Centered Iace-Centered  Face-Centered (2 Faces)

cell \

Cubic 2

lattice -

system

Tetragonal

Orthorhombic

*An infinite set of points generated by a discrete set of translation operations

Rogers, Pennathur, Adams, Nanotechnology: Understanding Small Systems. ©2010 | AJ.Hart | 8



Primative Body-Centered [ace-Centered  Face-Centered (2 Faces) L

Monoclinic

Hexagonal

Trigonal

Triclinic

Rogers, Pennathur, Adams, Nanotechnology: Understanding Small Systems. ©2010 | AJ.Hart | 9



Calibration
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http://www.sustainpack.com/nanotechnology.html

1 micrometer = 10°m
1 nanometer =10°m
1 angstrom = 1019 m

SO...
1 mm =1,000,000 um
1 um =1000 nm
1nm=10A
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“Building blocks” — beyond molecules

TR
__Aj":‘f{{'rf
0-D A
Nanoclusters Nanoparticles
Magic #'s of atoms 100’s-1000’s of atoms
<1 nm size ~1-100 nm diameter

100 nm

1-D 2-D

-
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Nanowires  Nanotubes Nanosheets
Filled Hollow ~1 atom thick
~1-100 nm dia, up to mm long and beyond! ©2010 | A, Hart | 12




ZnO nanowires

TEM image of
individual ZnO NW
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)i HMER ,1 Crystal structure:
SEM image of ZnO B hexagonal wurtzite,
1010 = 2201
NW array e e

stacked Zn%* and 0%

J. Ok, Y. Zhang ©2010 | A.J. Hart | 13



Example of diversity: ZnO

induced by epitaxy and surface polarity
there’s always a polymorphic distribution

Wang, J. Materials Chemistry 15:1021, 2004. ©2010 | AJ. Hart | 14



()
=

: core-shell nanow

Heterostructure
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Nature 420, 2003.

Lauhon et al,
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Anisotropic building blocks

Patterned
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Glotzer and Solomon. Nature Materials 6:557-562, 2007. ©2010 | AJ. Hart | 16



Surface-to-volume ratio (S/V)

= See written notes part 1

= QQ: What is different about a surface atom?
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Lots of surface atoms!
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Roduner, Nanoscopic Materials.
Rogers, Pennathur, Adams, Nanotechnology: Understanding Small Systems. ©2010 | A.J. Hart | 18



Charge density oscillations at a surface

Friedel
oscillation

exponential
*##P-de¢ay
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P
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Figure 1 Schematic drawing of the charge density distribution (Friedel oscillations)
across the surface of a spin-polarised electron gas representing the conduction
electrons of a metal

Roduner, Nanoscopic Materials. ©2010 | AJ. Hart | 19



(100) surface reconstruction of Si

Dimers

Groove

Unreconstructed and reconstructed surface of a silicon ( 100) erystal face. Note

the formation of dimers and of pronounced groves (arrows)

Figure 4
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Surface pressure

= See written notes part 2
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Figure 8 Average lattice parameter in gold samples deposited on a thin carbon film as a
Junction of the reciprocal mean particle radius R (or diameter D, respectively ).
The parameiters are derived from the (220) diffraction peak (dots) and the
(422) diffraction peaks (circles). ag corresponds to the bulk lattice parameter
(Reprinted from Ref. 17, with permission from Elsevier)

Roduner, Nanoscopic Materials. ©2010 | A.J. Hart | 22



Lattice spacing changes with particle size
and with distance from particle center!

0.404 = . ..\

£ 0.402

0.400

0 b 10
d/nm
Figure 9 Variation of the lattice parameter a with the distance d from the particle centre
for MgO supported Al particles with a radius of 11.4 nm (squares), 8.0 nm
(circles), and 5.2 nm (triangles)
(Reprinted from Ref. 20, with permission from Elsevier)

Roduner, Nanoscopic Materials. ©2010 | AJ. Hart | 23



Clusters

= Clusters are more
frequently found with
sizes (humbers of atoms)
that represent
geometrically closed
shells

THE SCIENCES - March/April 1991

Richard £. Smaffey, Growth of the Fullerene C,, 1991

GREAT BALLS OF CARBON

The Story of Buckminsterfullerene

by RicHARD E. Ssaariey

OW 15 A FLAWLESS DIAOND, hard and
sparkling, like an ordinary pencil lead, sofi
nd dull? A few weeks of beginning chem-

istry answers the riddle. Bodh diamond and pencil lead are
made of pure carbon. In dizmond the carban atoms forma
sturdy, three-dimensianal lattice in which each akom is
rigidly fixed ar the center of a terrahedron by bonds to four
o its neighbors at the wermahedral vartices, In penil lead,
of graphite, the carbon atoms cling together in flat sheets
of contiguous hexagons that resemble he structure of
chicken wire. Carbon, one of the commanese substances
an carth, is also one of the best-underswood. Farin spite of
the almost unfithomable complexity of the OrgNIC eorm-
pounds it forms in living systems, earbon in js pure form
has been studied for thousands of years. Uniil recently all
the evidence suggested it forms anly two basic stuctures,
diamond and graphire.

Thus to the modemn chemise a continuing study of pure
carbon would seem o offer litle hope for excitement,
That, ar least, was bow it seemed in 1985, when Harold
W. Kroto, a chemist from the University of Susser in

hotter than the sutfaces of most stars and certainly
eneugh to vaporize any known material,

Kivto knew the laser pulses eould help re-creste the
torrid conditions in carbon-rich red giants, and he sensed
that some great and exciting science was there 1 be un-
covered, As it oumned our, what was there was mee
bizarre and important than any of us imagined, For we
would find nat only Krom's long carbon snakes but alsa
previously unknown molecule of pure carbon, made of
atams bound to one another in a closed spherical nerwark,
reminiscent of the geodesic domes championed by the
cccentric architect and inventor R, Buckminster Fulles

Further research, particularly in the past yvear, has con-
firmed our initial suspicions abour the domelike carbom
molecules, now known as fullerenes. Here, in fact, 53
third basic form of pure carbon, the firse new form to be
discovered since the dawn of chemistry several hundred
vears ago. The molecule is remarkably stable and imper-
vious to radiation and chemical erasion, properrics that
“”EM lead w many impertant commercial applications m
| DT - P .
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“Magic numbers” in a plane

= Atom counting

Chart I. Triangles of Frequency 0, 1, 2. and 3¢

GA@/@%\

@fﬂ aa} 65} @?D}

% The triangles need not have equal sides. The numbers of
points (the triangular numbers ¢, ¢, r,, r,) are given in paren-
theses. A triangle of frequency », or a v, triangle, contains n + 1
points on each edge.

1 ¢ ‘e

# o0Jots

Teo and Sloane, Inorg. Chem. 24:4545, 1984.
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Magic numbers: counting triangles

- See wrltten notes part 3
Po 191\ F: #'fnal\ﬂlgs
p= ¥sides
n= ,]‘—wc‘uu\c}
Tele( * otars
2 1
G = LFEn” 2PN |
I
S'vl""M S.l\ = F'\ " 2 '
. —Fn - F P
— .o e/ o hv =
Gp=S5, 2 + 1
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Magic numbers: 2D

Chart VII. Centered Pentagons of Frequency 0, 1, 2, and 3 and
the Centered Pentagonal Numbers (p = F= §)

vy 111 vy 16) vy 167 g (3]

Chart VIII. Regular Hexagons of Frequency 0, 1, 2, and 3 and
the Classical Hexagonal Numbers (p = 6, F=4)

b (1) vy (B) vs (15]

Teo and Sloane, Inorg. Chem. 24:4545, 1984.
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Magic numbers: 3D

Chart XIII. Tetrahedra of Frequency 0, 1, 2, and 3¢

7 v, (4) v, (10} vy (20)

® The numbers in parentheses are the tetrahedral numbers o),
(see eq 41).

Chart XX, Cuboctahedron of Frequency 1

Teo and Sloane, Inorg. Chem. 24:4545, 1984. ©2010 | AJ. Hart | 29



Magic number clusters of [TiN]_
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Jena and Castleman, PNAS 103(28):10560-10569, 2006.
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Making and measuring clusters
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Fig. 17. Apparatus for the production, photoionization and time-of-flight mass analysis of clusters.

Martin, Physics Reports 273(199), 1996. ©2010 | AJ. Hart | 31



The platonic solids

Cube Star Octahedron Icosahedron Dodecahedron
Tetrahedron

more at http://en.wikipedia.org/wiki/Platonic solid
©2010 | A.J. Hart | 32




“Choice” of cluster geometry depends on
crystal structure

FCC nanoparticle (e.g., Au)

Table VII. Number of Surface Points (S,) and the Total Number of
Points (G,) for Various Archimedean and Other Figures

Table VI. Number of Surface Points (S,) and the Tot umber of Polyhedron " P23 4 s 87 i P
Points (G,) in Platonic Solids of Frequency n® truncated | S, | 116 58 128 226 352 S06 68% 898 1136 1402
AN tetrahedron | G, | 1 16 68 180 375 676 1106 1688 2445 3400 4576

Polyhedron | w01 2 3 4 5 6 7 8 9 10 \geubosta- | S, | 112 42 92 162 252 362 492 642 812 1002
tetrahedron | S, | 1 4 10 20 34 52 74 100 130 164 202 -hedron® | G, | 113 55147 309 561 923 1415 2057 2869 3871
G, |1 4 10 20 35 56 84 120 165 220 286 truncated | S, | | 32 122 272 482 752 1082 1472 1922 2432 3002

centered tet.” | G, [ 1 5 15 35 69 121 195 295 425 589 791 octahedron | G, 38 201 586 1289 2406 4033 6266 9201 12934 17561
cube Sa |1 8 26 56 98 152 218 296 386 483 602 truncated | S, 48 186 416 738 1152 1658 2256 2946 3728 4602

G, | 1 8 27 64125 216 343 512 729 1000 1331 vy cube G, 56 311 920 2037 3816 6411 9976 14665 20632 28031

centered cube” | G, | 1 9 35 91 189 341 559 855 1241 1720 2331 triangular S, 6 18 38 66 102 146 198 258 326 402
octahedron | S, [ 1 6 18 38 66 102 146 198 258 326 402 orism G, 6 18 40 7S 126 196 288 405 550 726
o |16 19 44 85 146 231 344 489 670 &9 hexagonal | S, | 1 14 50 110 194 302 434 390 770 974 1202

centered | S, | 112 42 92162 252 362 452 642 812 1002 prism G, | 114 57148 305 546 889 1352 1953 2710 364l
icosahedron | G, | 1 13 55 147 309 S61 923 1415 2057 2869 3871 ombic s 1114 50110 194 302 434 590 770 974 1202

centered S, | 132122 272 482 752 1082 1472 1922 2432 3002

dodecahedron | G, | 1 33 155 427 909 1661 2743 4215 6137 8569 11571 dodecahedron | G, \ 115 63 175 369 671 1105 1695 2465 3435 4641
square S, 5 14 29 S0 77 110 149 194 245 302

pyramid® | G, 5 14 30 55 91 140 204 285 385 506

tricapped | S, 9 30 65 114 177 254 345 450 569 702

prism 16 9 33 82 165 291 469 708 1017 1405 1881
Teo and Sloane, Inorg. Chem. 24:4545, 1984. ©2010 | AJ. Hart | 33




The allotropes™ of carbon

CNTs

Graphite Single-wall CNT Multi-wall CNT Diamond
(SWNT) (MWNT) Fullerene sp
D =3-100 nm D=0.4-3nm

T - y W
&) - .

[ - & N
-
T o - 3
o 4
s 'S 0 - i 2’

©2010 | A.J. Hart | 34



Carbon nanotubes (CNTSs)

Armchair
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CNTs: unit vectors and chiral vector
: oc'c.

Unit vectors

et SelelsZ
2e82ezeteless

(7 f
(circumferential) .‘...’Q .%.

N T N\ AT
vector 0 { o | T 5—5%

AR

o=
FIG. 2. Graphene honeycomb network with lattice vectors a ,G.u
and a,. The chiral vector C,=5a;+3a, represents a possible
wrapping of the two-dimensional graphene sheet into a tubular
form. The direction perpendicular to C, is the tube axis. The = ; a ¢
chiral angle # is defined by the C;, vector and the a, zigzag \.‘

direction of the graphene lattice. In the present example, a .
(5.3) nanotube is under construction and the resulting tube is = 2 _ € A

illustrated on the right. .
. Be.e > L% -
Charlier et al., Rev. Mod. Phys., 79(2), 2007. ©2010 | AJ. Hart | 36



A CNT as a crystal

= See written notes part

f)
2 A a -
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CNT unit cell

Translation
vector (T)

Charlier et al., Rev. Mod. Phys., 79(2), 2007. ©2010 | A.J. Hart | 39



ral CNTs

Zigzag, armchair, and ch

FIG. 3. Atomic structures of (12.,0) zigzag, (6,6) armchair, and
(6.4) chiral nanotubes.

Table 3.1: Classification of carbon nanotubes.

Type 62 C;} Shape of cross section Symmetry®)
armchair 30° (n,n) cis-type 7~ =" D, ® C;
21gzag 0° (n,0) {trans-type /NN D, ® C;

chiral 0° < 6] <30° (n,m) mixture of cisand trans Ca® Cny4
3) The chiral angle 6 is defined by Eq. (3.4).
®) The chiral vector is defined by Eq. (3.1), where n, m are integers n # m.
©) The group theory of carbon nanotubes is discussed in Sect, 3.6,

Charlier et al., Rev. Mod. Phys., 79(2), 2007. ©2010 | A.J. Hart | 40



T Ra

The

TR =

1. K i

Eg is calculated according to H. Yorikawa and S. Muramatsu, Phys. Rev. R 52, 2723 (1995)
for the semnconducﬁng luba (no curvature effects) and A, Kleiner and 5. Eggert, Phys. Rev. B 63, 073408 [2001) for the:
metallic and semi-metallic tubes (includes curvature). All other values are evaluated from the expressions below.

1421 A (graphita)

=
J a length of unit vector V3uag o 2.461 A
) aj, az unit vectors %{\/5, 1) %(\/5,—1] in (z,y) coordinates
by, b;  reciprocal unit vectors 3}(715, 1), ’%(715, -1) in (z,y) coordinates
Cy chiral vector nay + maz n, m integer
L citcumference of tube L=|Cpl=ayn?+mitnm 0<m<n
\( dy diameter of tube di=L/n
/1 ) chiral angle tand — gom 0°< <30
d highest. common divisor of (n,m)
i highest common divisor of Tiw {d fn—-m ls not a r.nultiple of 3d
(2n +m, 2m +n) 3d if n—m is a multiple of 3d
j T translational veetor of 1D unit cell T = tya; +tpag iy, ta integer
t=(2m+n)/dr
ty = —(2n+ m)/dr
L i length of T T = V3L/dr
N number of atoms per 1D unit cell N =4(n? + m? + nm)/dg N/2 = hexagons/unit cell




carbon—carbon distance
length of unit vector
unit vectors

reciprocal unit vectors
chiral vector
circumference of tube
chiral angle

highest common divisor of (n,m)

highest common divisor of
(2n + m, 2m +n)

translational vector of 1D unit cell

length of T

number of atoms per 1D unit cell

1.421 A (graphite)

V3 ac.c 2.461 A

2(v3,1), 3(v3,-1)

2m ¢ _1

2z r 1
a \ﬁtlL ?(731_1)
na; + mas

in (z,y) coordinates
in (z,y) coordinates

n, m integer

L=|Cpl=avVn?2+m24+nm 0<m<n

v am

= 2nt+m

d
de =
B {Sd

T = t1ay + tsag

t1 =(2m+n)/dr

to = —(2n+m)/dr

T =+/3L/dg

N =4(n? + m? + nm)/dg

tan @ 0° <9< 30°

if n — m is not a multiple of 3d
if n —m is a multiple of 3d

t1, to integer

N/2 = hexagons/unit cell

i
i
i
]




What is the smallest CNT?

“C3.

o e P o |
R S Za s S
(d) 0. 17 eV/atom

7

Hayashi et al., Nano Letters 3(7):887-889, 2003 -
Zhao et al., Phys Rev Lett 92(12):125502, 2004. ©2010 | AJ. Hart | 43



Nanotube modeler

http://www.jcrystal.com/products/wincnt/

"L Nanotube Modeler ® 2005, JCrystalSoft

Eile View Specal Tools Help

H®m b ¢ ¢o B0 EBS [aoms 0% |v| oonds | 100%]w ]|

|] Perspective Projection Atom Radius 50% | 1740 Atoms | 2488Bonds
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Nanostructures are not always
(pretty much never) perfect

Figure 3 Active topological defects observed by in situ HR-TEM. a—=h, Sequential HR-TEM images of an SWNT layer. Heptagons or higher-membered rings (red),
hexagons (green) and pentagons or smaller rings (blue) of carbon atoms tend to gather around the kink structure during observations.

Suenaga et al., Nature Nanotechnology, 2:358, 2007. ©2010 | A.J. Hart | 45



