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Announcements	
  
§ PS1	
  due	
  next	
  W	
  Feb/3	
  
§  Some	
  material	
  is	
  yet	
  to	
  be	
  covered	
  in	
  lecture	
  

§ Mostafa’s	
  office	
  hours	
  Th	
  4.30-­‐6.30,	
  1363	
  GGB	
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Energy	
  carriers	
  
§  Electron	
  -­‐	
  subatomic	
  parWcle	
  carrying	
  a	
  
negaWve	
  charge	
  
	
  à	
  interac(on	
  between	
  electrons	
  is	
  the	
  main	
  cause	
  
of	
  chemical	
  bonding	
  

§  Photon	
  -­‐	
  quantum	
  of	
  electromagneWc	
  field	
  
and	
  the	
  basic	
  unit	
  of	
  light	
  

§  Phonon	
  –	
  a	
  quanWzed	
  mode	
  of	
  vibraWon	
  in	
  a	
  
la]ce	
  

§  Exciton	
  -­‐	
  a	
  “quasiparWcle”,	
  a	
  bound	
  state	
  
consisWng	
  of	
  an	
  electron	
  and	
  a	
  hole	
  
	
  à	
  formalism	
  for	
  transpor(ng	
  energy	
  without	
  
transpor(ng	
  net	
  charge	
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Size	
  effects	
  and	
  confinement	
  
§ Classical	
  size	
  effects:	
  When	
  the	
  carrier	
  mean	
  free	
  path	
  is	
  
comparable	
  to	
  the	
  size	
  of	
  the	
  system	
  à	
  the	
  boundaries	
  
become	
  important.	
  

§ Quantum	
  size	
  effects:	
  When	
  the	
  carrier	
  wavelength	
  is	
  
comparable	
  to	
  the	
  size	
  of	
  the	
  system	
  à	
  the	
  waves	
  
interfere	
  in	
  a	
  coherent	
  way,	
  causing	
  discreWzaWon	
  of	
  
allowable	
  energy	
  levels.	
  
§  The	
  density	
  of	
  states	
  is	
  restricted	
  
§  The	
  band	
  structure	
  changes	
  with	
  size	
  of	
  the	
  material	
  
§  Due	
  to	
  aspect	
  raWos,	
  properWes	
  of	
  a	
  nanostructure	
  can	
  be	
  highly	
  

anisotropic	
  
§  The	
  boundaries	
  are	
  also	
  important	
  in	
  this	
  regime	
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Ψ	
  	
  =	
  wavefunc(on	
  (complex	
  func(on	
  
of	
  posi(on	
  and	
  (me)	
  

|Ψ	
  	
  |2 =	
  probability	
  density	
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Size-­‐dependent	
  color	
  of	
  quantum	
  dots	
  

Frankel,	
  Bawendi.	
  

1.5	
  nm	
  

<100>	
  CdSe	
   <001>	
  CdSe	
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Absorp>on	
  and	
  emission	
  

h?p://www.eviden?ech.com/quantum-­‐dots-­‐explained/how-­‐quantum-­‐dots-­‐
work.html	
  

sWmulus	
  

emission	
  

1	
   2	
  

3	
   4	
  (1)	
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Idealized	
  band	
  model	
  for	
  a	
  quantum	
  dot,	
  
assuming	
  strong	
  confinement	
  

Gaponenko.	
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As	
  size	
  increases	
  (confinement	
  decreases),	
  
absorp>on	
  approaches	
  bulk	
  character	
  

Alivisatos.	
  

D = 3.7 nm  

D = 5.2 nm 
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  Michalak	
  et	
  al.,	
  Science	
  307:538-­‐544,	
  2005.	
  

Examples:	
  different	
  semiconductor	
  crystals	
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Manufacturing:	
  tuning	
  op>cal	
  
proper>es	
  by	
  synthesis	
  
condi>ons	
  

Alivisatos.	
  



©2010	
  |	
  A.J.	
  Hart	
  |	
  12	
  

Imaging	
  with	
  quantum	
  dots	
  
§ Previous	
  technology	
  =	
  fluorescent	
  proteins	
  
§ New	
  technology	
  =	
  semiconductor	
  nanoparWcles	
  
§  Narrow	
  emission	
  peaks	
  
§  Size-­‐dependent	
  emission	
  
§  Long	
  lifeWme	
  (resists	
  photobleaching,	
  i.e.,	
  photochemical	
  degradaWon)	
  
§  Diverse	
  chemical	
  linkages	
  to	
  surfaces	
  

§ Typical	
  emission	
  lifeWmes	
  (at	
  ∼105	
  photons/s)	
  
§  Green	
  fluorescent	
  protein	
  =	
  0.1-­‐1	
  s	
  
§  Organic	
  dye	
  =	
  1-­‐10	
  s	
  
§  CdSe/ZnS	
  quantum	
  dot	
  =	
  105	
  s	
  

Gao	
  et	
  al.,	
  Nature	
  Biotechnology	
  22(8):969-­‐976,	
  2004.	
  
h?p://en.wikipedia.org/wiki/Photobleaching	
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Commercially-­‐available	
  quantum	
  dots	
  

h?p://www.eviden?ech.com	
  	
  



©2010	
  |	
  A.J.	
  Hart	
  |	
  14	
  

Quantum	
  dot	
  LEDs	
  

h?p://www.eviden?ech.com	
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Today’s	
  agenda	
  
§ Dispersion	
  relaWons	
  and	
  carrier	
  staWsWcs	
  
§ Development	
  of	
  band	
  structure	
  
§ Examples:	
  
§  Single	
  electron	
  transistors	
  
§  Electrical	
  properWes	
  of	
  CNTs	
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Today’s	
  readings	
  
Nominal:	
  (on	
  ctools)	
  
§ Chen,	
  SecWon	
  3.2	
  
§ Rogers,	
  Pennathur,	
  and	
  Adams,	
  excerpt	
  on	
  
Nanoelectronics,	
  from	
  Understanding	
  Small	
  Systems	
  

§ Avouris,	
  “Carbon-­‐based	
  electronics”	
  
	
  

Extras:	
  (on	
  ctools)	
  
§  Sheldon	
  et	
  al.,	
  “Enhanced	
  semiconductor	
  nanocrystal	
  
conductance	
  via	
  soluWon	
  grown	
  contacts”	
  

§ Ho	
  et	
  al.,	
  “Scaling	
  properWes	
  in	
  transistors	
  that	
  use	
  
aligned	
  arrays	
  of	
  single-­‐walled	
  carbon	
  nanotubes”	
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More	
  on	
  crystals	
  
§ Many	
  transport	
  properWes	
  are	
  determined	
  by	
  periodicity	
  
of	
  the	
  atomic	
  la]ce.	
  

§ Atomic	
  arrangement	
  determines	
  allowable	
  energy	
  levels	
  
(recall	
  from	
  QM:	
  wave	
  modes)	
  of	
  energy	
  carriers.	
  

§  In	
  the	
  literature,	
  informaWon	
  is	
  presented	
  in	
  reciprocal	
  
space.	
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Figure 3.14 The Brillouin zone and Wigner-Seitz unit cell of a one-dimensional lattice.

way of representation is called the reduced-zone representation. Often, only half of the
band, [0, π/a], needs to be drawn because the band is symmetric for both positive and
negative wavevector values. The relationship between the energy and the wavevector,
as examplified in figure 3.13(b) is the dispersion relation.

We see that at the minimum separation between two energy bands occurs at
km(= sπ/a, s = 0, ±1, ±2, . . . ). What do they km stand for and why do the minimum
separations occur at km? For the one-dimensional lattice being considered with a lattice
constant equal to a, its reciprocal lattice is also one-dimensional with a lattice constant
equal to 2π/a. The Wigner–Seitz cell in the reciprocal lattice, which is the first Brillouin
zone as we explained before, is shown in figure 3.14. The boundaries of this primitive
unit cell in the reciprocal space are at ±π/a. Thus km represents the lattice vectors
constructed using the primitive lattice vector of the Wigner–Seitz cell in the reciprocal
space for the one-dimensional lattice. When we generalize to three-dimensional crystals,
km will be replaced by the reciprocal lattice vector G. In most cases, the energy gap
occurs at the Brillouin zone boundaries, that is, when k = G. This is not a coincidence
since it results from the interference effects of electrons in periodic structures. This
mechanism is not very different from the observation of diffraction peaks by X-ray and
electron beams that we discussed in section 3.1.4. We also plotted the energy dispersion
of a free electron in the reduced-zone representation in figure 3.13, which does not show
an energy jump at km but is otherwise similar to that of an electron inside the periodic
potential. The main effect of the periodic potential is to modify the band structure
near km, as a result of the diffraction of the electron waves. More discussion on wave
interference will be given in chapter 5.

We now determine the value of the wavevector k in the Bloch theorem, using the
Born–von Karman periodic boundary condition. This boundary condition deals with
the end points of a crystal. Ordinarily, we would think that the two end points are
different from the internal points. For many applications, however, it is not necessary
to distinguish the boundary points from the internal points, because a crystal usually
has a tremendous number of lattice points (this is not true for quantum wells, quantum
wires, and quantum dots). The Born–von Karman boundary condition requires that the
wave functions at the two end points be equal to each other; that is, the two end points
[points 1 and N + 1 in figure 3.15(a)] are overlapped to form a lattice loop as shown in
figure 3.15(b),

"[x + N(a + b)] = "(x) (3.33)

	
  
Chen.	
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Real	
  space	
  vs.	
  reciprocal	
  space	
  la[ces	
  in	
  3D	
  

	
  
Chen.	
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Dispersion	
  rela>ons	
  

§ Dispersion	
  rela>on:	
  the	
  relaWonship	
  
between	
  energy	
  and	
  momentum	
  
(frequency	
  and	
  wave-­‐vector)	
  

§  Light	
  in	
  vacuum:	
  

§  In	
  real	
  materials,	
  dispersion	
  relaWons	
  for	
  
electrons,	
  phonons,	
  photons,	
  etc.	
  are	
  
complicated:	
  frequency	
  a	
  more	
  complex	
  
funcWon	
  of	
  wavelength	
  

	
  

h?p://en.wikipedia.org/wiki/Dispersion_relaWon	
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Electrons	
  in	
  a	
  periodic	
  system	
  
	
  
The	
  "free"	
  electron	
  

52 NANOSCALE ENERGY TRANSPORT AND CONVERSION

the quantum world. Because h̄ is a very small number, the uncertainty represented by
eq. (2.29) for a macroscopic object is very small. For example, if we decide that an object
with a momentum of 1 kgms−1 has an uncertainty of 10−10 kgms−1, the correspond-
ing uncertainty in determining its position is ∼ 10−24 m, a negligible quantity. This
uncertainty, however, becomes quite appreciable for small particles such as electrons.

For our further use, we need also to have an expression for the flux of the matter
being considered. This can be obtained by (1) first multiplying the Schrödinger equa-
tion, (2.16), by !∗

t , (2) taking the complex conjugate of the Schrödinger equation and
multiplying the obtained equation by !t , and (3) subtracting the two resulting equations,
which leads to

∂ |!t |2
∂t

+ ∇ • J = 0 (2.30)

where J is

J = ih̄

2m
(!t∇!∗

t − !∗
t ∇!t ) (2.31)

Since the first term in eq. (2.30) is the rate of the change of the probability of finding
the matter at each location, the second term in eq. (2.30) must be the net rate of matter
flowing out of the point. Equation (2.30) is the particle conservation equation and Jm−2g
is understood as the current density (or flux) of the material wave.

The wavefunction concept is difficult concept to grasp at first sight and this is not
strange, since even Schrödinger himself was not able to explain the meaning of the
wavefunction. However, Schrödinger was successful in using the equation to show that
the energy states of electrons are quantized, as we will see later. Born’s explanation of
the wavefunction products !t!

∗
t as a probability density of matter implies that material

particles have spatial extent with some ambiguity, as we will see from the example
solutions of the Schrödinger equation.

2.3 Example Solutions of the Schrödinger Equation

In this section, we will give some solutions to the Schrödinger equation for several
important cases that we will use later.

2.3.1 Free Particles

A free particle is one that it is not subject to any potential constraints; that is, U = 0.
We can think of this free particle as a free electron. For the particle traveling along the
x-direction, eq. (2.27) becomes

− h̄2

2m

d2!

dx2 − E! = 0 (2.32)

The solution of the above equation is

!(x) = A • exp(−ikx) + B • exp(ikx) (2.33)
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Schrodinger	
  equaWon:	
  

Parabolic	
  dispersion	
  

A	
  periodic	
  poten>al	
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sample at a fixed direction, and the diffracted X-ray is measured by a fixed detector;
refer to figure 3.10(a). The crystal is rotated to change the angle of incidence θ

Figure 3.10(b) with in to a special crystal When the Bragg condition is not satisfied,
the detector will register very little signal. But when crystals are rotated to the
positions where the Bragg condition, eq. (3.17), is satisfied, the detector will register
a peak. A typical scan curve is shown in figure 3.9(a). Different peaks correspond to
different crystal planes. For an X-ray of wavelength 1 Å and a first-order diffraction
peak at θ = 30◦, the corresponding spacing between the two crystal planes is

a = 1Å
2 sin 30◦ = 1Å

3.2 Electron Energy States in Crystals

In the previous chapter, we discussed the energy levels of single atoms and harmonic
oscillators. These energy levels are typically discrete. In solids, the wavefunctions of
closely spaced atoms begin to overlap and form new wavefunctions and, correspondingly,
new energy levels. We will see that the energy levels become more continuous than those
of individual atoms. This trend can be thought of as the result of the broadening of the
energy levels of individual atoms to avoid the overlapping of wavefunctions because,
according to the Pauli exclusion principle, each quantum state can have only a maximum
of one electron. In crystals, the most fundamental characteristic is the periodicity of the
lattice. Such periodicity brings in many new features to the allowable energy levels of
electrons as well as phonons. In this section, we will start from a simple one-dimensional
model to examine the effect of periodicity on the electronic energy levels and then extend
the discussion to three-dimensional crystals.

3.2.1 One-Dimensional Periodic Potential (Kronig–Penney Model)

Let’s consider a simple one-dimensional lattice. The potential field is a periodic function,
as sketched in figure 3.11(a). At the location of each ion, the electrons are attracted by
the ion and have the lowest potential. As an approximation to the actual atomic potential
distribution in a crystal a in figure 3, we consider a square periodic potential as shown
in figure 3.11(b) and want to find out the energy levels, assuming there is only one
electron inside such a periodic potential. As in the case that the hydrogen energy level
can be used to explain the periodic table, the existence of many electrons in a crystal
does not change the main picture obtained from the one-electron assumption. This

Figure 3.11One-dimensional periodic potential model: (a) sketch of atomic potential; (b) Kronig-
Penney model.

	
  
Chen.	
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Conductors	
  vs.	
  insulators	
  

86 NANOSCALE ENERGY TRANSPORT AND CONVERSION

In ionic crystals, such as NaCl, the single valence electron in the sodium atom
moves to the chlorine atom so that both Na+ and Cl− have closed electron shells
but, meanwhile, become charged. The Coulomb potential among the ions becomes
the major attractive force. The potential energy of any ion i in the presence of other ions
j is then

Ui,A =
∑

i=/ j

±q2

4πε0rij
= − αq2

4πε0r0
(3.8)

where q is the charge per ion, ε0 the dielectric permittivity of free space, and r0 the
nearest-neighbor separation. The parameter α is called the Madelung constant and is
related to the crystal structure. This attractive potential, combined with an appropriate
repulsive potential, constitutes the total potential energy in ionic crystals.

Covalent bonds are formed when electrons from neighboring atoms share common
orbitals, rather than being attached to individual ions as in ionic crystals. Biological
molecules are often formed through covalent bonding. Many inorganic systems are also
covalently bonded, such as the H2 molecule. The electron in each hydrogen atom of an H2
molecule shares a common orbital (one spin-up and the other spin down) with the other
electron in the other H atom. The covalent bond is strongly directional. In the case of the
H2 molecule, the bond is oriented along the line of the two nuclei. Diamond, silicon, and
germanium are all covalent crystals. Each atom has four electrons in the outer shell and
forms a tetrahedral system of covalent bonds with four neighboring atoms, as indicated
in figure 3.5(a). In certain crystals, such as GaAs, both covalent and ionic bonding are
important. Fundamentally, the covalent bonding force is also due to charge interaction.
However, unlike the van der Waals force in molecular crystals or the electrostatic force
in ionic crystals, it is more difficult to construct simple expressions for covalent crystals.
Empirical potentials have been developed, such as the Stillinger–Weber potential for
silicon (Stillinger and Weber, 1985). Expressions for various empirical potentials will
be presented in chapter 10.

In covalent bonds, electrons are preferentially concentrated in regions connecting the
nuclei, leaving some regions in the crystal with low charge concentration, as illustrated
in figure 3.7(a). Metals and their associated metallic bonds can be considered an extreme
case of covalent bonds, in which the bonds begin to overlap and all regions of the crystal
become filled up with charges [figure 3.7(b)]. In the case of total filling of the empty
space, it becomes impossible to tell which electron belongs to which atom. One can
imagine the entire crystal as one big molecule with the electrons shared amongst all

Figure 3.7 Distribution of electrons (gray area) in (a) a covalent bonding crystal and (b) a metallic
bonding crystal (after Ashcroft and Mermin, 1970).

	
  
Chen,	
  chapter	
  3.	
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Electrons	
  in	
  a	
  periodic	
  system	
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sample at a fixed direction, and the diffracted X-ray is measured by a fixed detector;
refer to figure 3.10(a). The crystal is rotated to change the angle of incidence θ

Figure 3.10(b) with in to a special crystal When the Bragg condition is not satisfied,
the detector will register very little signal. But when crystals are rotated to the
positions where the Bragg condition, eq. (3.17), is satisfied, the detector will register
a peak. A typical scan curve is shown in figure 3.9(a). Different peaks correspond to
different crystal planes. For an X-ray of wavelength 1 Å and a first-order diffraction
peak at θ = 30◦, the corresponding spacing between the two crystal planes is

a = 1Å
2 sin 30◦ = 1Å

3.2 Electron Energy States in Crystals

In the previous chapter, we discussed the energy levels of single atoms and harmonic
oscillators. These energy levels are typically discrete. In solids, the wavefunctions of
closely spaced atoms begin to overlap and form new wavefunctions and, correspondingly,
new energy levels. We will see that the energy levels become more continuous than those
of individual atoms. This trend can be thought of as the result of the broadening of the
energy levels of individual atoms to avoid the overlapping of wavefunctions because,
according to the Pauli exclusion principle, each quantum state can have only a maximum
of one electron. In crystals, the most fundamental characteristic is the periodicity of the
lattice. Such periodicity brings in many new features to the allowable energy levels of
electrons as well as phonons. In this section, we will start from a simple one-dimensional
model to examine the effect of periodicity on the electronic energy levels and then extend
the discussion to three-dimensional crystals.

3.2.1 One-Dimensional Periodic Potential (Kronig–Penney Model)

Let’s consider a simple one-dimensional lattice. The potential field is a periodic function,
as sketched in figure 3.11(a). At the location of each ion, the electrons are attracted by
the ion and have the lowest potential. As an approximation to the actual atomic potential
distribution in a crystal a in figure 3, we consider a square periodic potential as shown
in figure 3.11(b) and want to find out the energy levels, assuming there is only one
electron inside such a periodic potential. As in the case that the hydrogen energy level
can be used to explain the periodic table, the existence of many electrons in a crystal
does not change the main picture obtained from the one-electron assumption. This

Figure 3.11One-dimensional periodic potential model: (a) sketch of atomic potential; (b) Kronig-
Penney model.
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one-electron, rectangular periodic potential model is called the Kronig–Penney model.
The Schrödinger equation is then

− h̄2

2m

d2!

dx2 + (U − E)! = 0 (3.19)

The potential distribution U(x) is given by

U(x) =
{

0 0 < x ≤ a

U0 −b < x ≤ 0
(3.20)

subject to the following periodicity requirement

U(x + a + b) = U(x) (3.21)

Solutions for eq. (3.19) are

! = AeiKx + Be−iKx(0 < x ≤ a) (3.22)

! = CeQx + De−Qx(−b ≤ x ≤ 0) (3.23)

where

E = h̄K2

2m
and U0 − E = h̄2Q2

2m
(3.24)

and K and Q are to be determined, from which the eigen energy E of the electron inside
such a periodic potential is to be extracted.

Four boundary conditions are needed to determine the unknown coefficients A, B, C,
and D. We can use the continuity of the wavefunction and its derivative at x = 0,
which gives

A + B = C + D (3.25)

iK(A − B) = Q(C − D) (3.26)

Two more boundary conditions are necessary to determine the four unknown coefficients.
We can consider the continuity of the wavefunction and its derivative at x = a, but this
requires that we know the wavefunction in a < x ≤ a + b. The wavefunction in this
region can be related to that in the region −b < x < a because the potential is periodic.
Due to the periodicity in the potential, the wavefunction at any two points separated by
a lattice vector is related through the Bloch theorem,

!(r + R) = !(r) exp(ik • R) (3.27)

where R is a lattice vector and k is the wavevector of the crystal. The Bloch theorem
implies that the wavefunction values at two equivalent points (r and r + R) inside a
crystal differ by only a phase factor exp(ik • R)and that we need to know only the
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one-electron, rectangular periodic potential model is called the Kronig–Penney model.
The Schrödinger equation is then

− h̄2

2m

d2!

dx2 + (U − E)! = 0 (3.19)

The potential distribution U(x) is given by

U(x) =
{

0 0 < x ≤ a

U0 −b < x ≤ 0
(3.20)
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requires that we know the wavefunction in a < x ≤ a + b. The wavefunction in this
region can be related to that in the region −b < x < a because the potential is periodic.
Due to the periodicity in the potential, the wavefunction at any two points separated by
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wavefunction inside one unit cell. For the one-dimensional problem being considered,
eq. (3.27) is

![x + (a + b)] = !(x) exp[ik(a + b)] (3.28)

We should distinguish the wavevector k from the propagation vector of the solution, K

in eq. (3.22). The latter contains the energy of the electrons that we want to find. We will
explain later, in more detail, the meaning of wavevector k. We want to find a relation
between k and E, which is equivalent to a relation between k and K .

From Bloch’s theorem, we know that if the wavefunction for −b < x < 0 is given
by eq. (3.23), the wavefunction for a < x < a + b is that given by eq. (3.23) multiplied
by exp[ik(a + b)]. The continuity requirements for the wavefunction and its derivative
at x = a are then

AeiKa + B−iKa
e = (Ce−Qb + DeQb) exp[ik(a + b)] (3.29)

iK(AeiKa − B−iKa
e ) = Q(Ce−Qb − DeQb) exp[ik(a + b)] (3.30)

Now we have four equations, eqs. (3.25), (3.26), (3.29), (3.30), and four unknowns,
A, B, C, D. Examining these equations indicates that this is a set of linear homogeneous
equations and is thus again an eigenvalue problem, and a solution exists only when the
determinant of the coefficients A, B, C, and D equals zero. From this condition, we
arrive at the following equation

Q2 − K2

2KQ
sinh(Qb) sin(Ka) + cosh(Qb) cos(Ka) = cos[k(a + b)] (3.31)

where “sinh(x)” and “cosh(x)” are hyperbolic sine and cosine functions. For a given
wavevector k, the only unknown in the above equation is the electron energy E, which
is embedded in both K and Q. Thus the above equation can be used to determine a
relationship between E and k. To get a better idea of what the solution looks like, let’s
assume b → 0 and U0 → ∞, but keep Q2ba/2(= P) equal to a constant. Under this
approximation, sinh(Qb) ≈ Qb, and cosh(Qb) ≈ 1. Equation (3.31) reduces to

P

Ka
sin Ka + cos Ka = cos ka (3.32)

We can solve the above equation for (Ka) as a variable as a function of (ka) and
use eq. (3.24) to find out allowable energy E from K . One important observation is
that the magnitude of the left-hand side of eq. (3.32) can be larger than 1 whereas the
right-hand side cannot. Therefore, the equation has no solution for those values of K

(and thus energy) where the absolute values of the left-hand side are larger than one.
A graphical representation of the left-hand side is shown in figure 3.12, where the right-
hand side is bounded within [−1, 1]. In the shaded region, there is no solution for K , and
thus no electrons with energies corresponding to such K values exist. We can convert
the solution for K into energy, and redraw the graph as a function of ka as shown in
figure 3.13(a). The figure shows that, for each wavevector k, there are multiple values
for the electron energy E.
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Figure 3.12 Left-hand side of eq. (3.32) as a function of Ka/π. Because the right-hand side
is always less than or equal to one, there are regions (the shaded area) where no solution for
Ka/π exists, and thus no electrons exist with energy corresponding to the values of K in this
region.

The electron energy forms quasi-continuous bands (because k itself is quasi-
continuous) separated from each other by a minimum gap that occurs at ka = sπ

(s = 0, ±1, ±2, . . . ), or k = sπ/a, at which the right-hand side of eq. (3.32) is ±1.
Figure 3.13(a) implies that there are multiple values of k for each energy E. However,
the Bloch theorem, eq. (3.28), says that wavefunctions correspond to the wavevectors
k separated by m(2π/a) (since b = 0) are identical, they are the same quantum state
and should be counted only once. Thus, rather than plotting the energy eigenvalues for
all the wavevectors, we can plot them in one period, as shown in figure 3.13(b). This

Figure 3.13 Electron energy as a function of its wavevector: (a) extended zone representation;
(b) reduced zone representation. Dashed lines are free electron energy levels. Solid lines from
Kronig-Penney model.
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Figure 3.17 Electron band structures of (a) copper (Mattheiss, 1964), (b) silicon, and (c) GaAs
(Si and GaAs from Chelikowsky and Cohen, 1976). Copper is a metal because the Fermi level falls
inside the bands. The Fermi level for Si and GaAs at zero temperature is at the top of the valence
band (E = 0). Silicon is an indirect gap semiconductor since the minimum of the conduction
band and that of the valence band are not at the same wavevector location. GaAs is a direct
gap semiconductor because the minima occur at the same wavevector (k = 0 for this case). All
bandgaps values are those at 300 K.

gap exists in which no electrons are allowed at T = 0 K. The values and locations of
the energy gap are different for dissimilar crystallographic directions, and the absolute
minimum gap is called the bandgap. GaAs is a direct gap semiconductor because the
minima of the conduction and the valence bands occur at the same wavevector. Si is an
indirect gap semiconductor because the two minima do not occur at the same wavevector.
Direct and indirect gap semiconductors have major differences in their optical properties.
Direct bandgap semiconductors are more efficient photon emitters, semiconductor lasers
are made of direct gap semiconductors such as GaAs, whereas most electronic devices
are built on silicon technology.

For semiconductors, since most electrons are close to the minimum of the conduction
band and holes are close to the minimum of the valence band, it is convenient to express
the band structure near the minima in analytical form. Since the minima typically mean
that the first-order derivative, ∂E/∂k, is zero (as long as the first-order derivative exists),
the second-order terms often are used. For the conduction band, the expansion of the
electron allowable energy level near the minimum is often written in the form

E − Ec = h̄2

2

(
k2
x

m11
+

k2
y

m22
+ k2

z

m33

)

(3.37)

where

mij = h̄2

(∂2E/∂ki∂kj )(∂2E/∂ki∂kj )
(3.38)
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Figure 3.16 Explanation of metals, insulators, and semiconductors based on the one-dimensional
band structure. (a) Electrons in metal partially fill a band. The top-most level (Ef ) is called the
Fermi level. (b) Electrons fill to the top of the band. When the energy gap Eg is large, no electrons
can be excited to the next higher energy band and the material is an electrical insulator. (c) When
the energy gap Eg is relatively small, some electrons can be thermally excited to the next higher
energy band (called the conduction band), leaving the same number of empty states (holes) in the
valence band. The material is an intrinsic semiconductor. (d) Impurities (more commonly called
dopants) may have an energy level close to that of the conduction band. Electrons can be excited
from the impurities and fall into the conduction band, resulting in more electrons than holes. Such
a semiconductor is called an n-type semiconductor and the dopants are called donors. (e) When
the impurity energy levels are close to the valence band, electrons are excited from the valence
band into the impurity level, leaving more holes behind. Such semiconductors are called p-type
and the impurities are called acceptors.

still the mean free path of an electron can be as long as thousands of angstroms, and
the number of atoms in a cube on the order of one mean free path is enormous, ∼106

to ∼108 atoms. It is amazing that an electron can zigzag through these atoms without
getting scattered. Because of this behavior, we often treat electrons as a gas and neglect
the ions completely, except when considering their occasional scattering effect.

Although the above solution is valid only for one electron, the existence of multiple
electrons does not affect the qualitative picture of the energy bands, as long as the
Coulomb potential between electrons is small compared to the potentials between elec-
trons and ions. With such a simple picture of the energy bands, we can begin to understand
the difference between insulators, metals, and semiconductors. In the first Brillouin zone,
there are N allowable wavevectors for a lattice chain with N lattice points. Because each
wavevector represents a wavefunction and each wavefunction can have a maximum of
two electrons with different spins, each band can have a maximum of 2N electrons
for a one-dimensional lattice. At zero temperature, the filling rule for the electrons is
that they always fill the lowest energy level first, as required by thermodynamics. For
alkali metals and noble metals that have one valence (free) electron per primitive cell,
the band is only half filled since there are only N valence electrons in this case, as
shown in figure 3.16(a). The topmost energy level that is filled with electrons at zero
kelvin is called the Fermi level. The electron energy and momentum can be changed
(almost) continuously within the same band because the separation between successive
energy levels is small. Thus, these electrons can flow freely, making the materials good
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