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Announcements
= HW?2 posted, due M Feb/22
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Recap: intermolecular and surface forces

= Electrostatic/polarization interactions cause intermolecular‘

forces, at length scales of 1-100 nm (short-long range)

= WWe can calculate forces between solid bodies by summing

pairwise interaction potentials, e.g., for van der Waals
forces using the Lennard-Jones potential

= These forces practically govern adhesion, local deformation,

and assembly of nanostructures
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VDW energies for regular geometries
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Adhesion scaling in nature

body mass =
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Synthetic gecko adhesives
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Today’ s agenda m
= Definition of surface energy and work of adhesion L ‘

" Thermodynamic model of melting point decrease
(suppression) of nanoparticles

= Generalization to different geometries
= Design of non-wetting surfaces
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Today’ s readings

Nominal: (on ctools)

= Couchman and Jesser, “Thermodynamic theory of size
dependence of melting temperature in metals”

» Goldstein et al., “Melting in semiconductor nanocrystals’

= Tuteja et al., “Design parameters for superhydrophobicity
and superoleophobicity”
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Fig. 11.8. (a) Two planar media or half-spaces. The pairwise summation of London
dispersion energies between all atoms leads to Eq. (11.30). For two surfaces close together,
their total surface energy may therefore be written as 29(1 = D}/D?). The long-range van
der Waals interaction energy can be seen to be no more than a perturbation of the

surface energy 7. A similar result is obtained for (b), a thin film
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Model of nanoparticle melting

Assumptions:
= Spherical particle

= Melting begins at particle surface, with uniform liquid layer
= No volume or density changes

= Floating (no surrounding/substrate effects)
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Fit of thermodynamic theory to data
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Is the catalyst solid or liquid?
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Watching quantum dots melt
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Fig. 1. The sequence of events during a melting experiment. The length marker in (A) is 30 A; in the
other panels the length marker represents 50 A. (A) High-resolution micrograph of a single 30 A
CdS nanocrystal before heating. (B) Field of particles before heating. (C) The corresponding
radially averaged ring diffraction pattern. (D) Polycrystalline thin film formed by melting and fusing
nanocrystals in a region of high nanocrystal density on the grid [(111) planes are evident diagonally
across the micrograph and can be seen along the directions of the white arrows]. (E) Field of
isolated particles after a melting cycle. The shape and size are preserved from (B). (F) The
diffraction pattern from isolated particles after melting shows increased crystallinity. The arrows in
(C) and (F) denote the (111), (200), (220), (311), and (222) peaks of CdS. Peaks with no arrows
above them are from the amorphous C substrate.

Goldstein et al., Science 256:1425, 1992. ©2010 | AJ. Hart | 25
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Fig. 2 (left). Logarithm of the intensity of electron diffraction from the (111) peak as a function of
temperature for several sizes of CdS nanocrystals. The curves have been arbitrarily offset vertically
for visual clarity. For each size, there is a sharp decrease in log intensity above the melting
temperature. (& and solid line), 12 A radius; (A and short dashed line), 13 A radius; (+ and dotted
line), 16 A radius; (B and long dashed line), 18 A radius. Fig. 3 (center). Lattice parameter of
CdS nanocrystals as a function of the reciprocal particle radius, A. (A) Points from bare
nanocrystals; the dashed line for bare nanocrystals yields a surface tension of 250 N m~'. (H)
Points from mercaptoacetic acid—capped nanocrystals; the solid line fit yields a surface tension of
1.74Nm~". Fig. 4 (right). Size dependence of T_, for CdS nanocrystals. (B and +) T, derived
from the disappearance of electron diffraction from an ensemble of thiophenol (or mercaptoacetic
acid)—capped nanocrystals; (V), T, derived by observing the change in dark field of a single CdS
particle. The solid curve represents a fit to Eq. 1 using vy, derived from Fig. 3.

Goldstein et al., Science 256:1425, 1992. ©2010 | AJ. Hart | 26



Magic numbers are more stable (Na)
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FIG. 1. Snapshot views of the MD sample with N=3294 and
R=225A. (a) and (b) are the initial sample at 0 K. (a) is the top
view of the wire cross section. Wire axis (z direction) is perpen-
dicular to this cross section. (b) is the side view from an angle such
that all different laterals are seen. (c) and (d) are corresponding
views at a temperature just below the melting temperature. The
grayness of each atom is proportional to its square displacement
during a MD run. White indicates a nondiffusing, crystalline behav-
ior.

Gulseren et al., Phys. Rev. B. 51(11):7337, 1995.
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FIG. 3. Melting temperature of different clusters as a function of
inverse radius. Solid circles refer to wires, open squares to spherical
clusters, the dashed lines are the predictions of the simple phenom-
enological theory (see text).
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Hydrophilic or hydrophobic? (see videos)

Courtesy of Hyungwoo Lee, MIT ©2010 | AJ. Hart | 31



Wetting

= Wetting is the ability of a liquid to maintain contact with a L
solid surface, resulting from intermolecular interactions
when the liquid and solid are brought together

" Thus, the degree of wetting is determined by a force
balance between adhesive and cohesive forces

Strength of:

Degree of
Contact angl
gle wetting . SIL' . UL.
interactions interactions
6=0 Perfect wetting|  strong weak
_ - strong strong
0 <8 <90° high wettability

weak weak

90° =6 < 180° | low wettability weak strong
S 6 = 180° perfectly weak strong
non-wetting

= Liquids more frequently wet solids having high surface
energy (i.e., strongly bonded solids) than solids with low
surface energy (i.e., VDW solids). It’ s practically difficult
to prevent low surface energy liquids from wetting solids, . , | AJ. Hart | 32



Advancing and receding
contact angles —multiple

Cassie-Baxter stable contact angles
14-pym diameter, 30-uym height,and 105-um pitch pillars
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Droplet condensation and growth in ESEM

Water droplets in 1, 2, 3 appear Water droplets in 2 merge Water droplets in 3 merge

Nosonovsky and Bhusan, Nano Letters 7(9):2633-2637, 2007. ©2010 | AJ. Hart | 33



Superhydrophobicity: petal and lotus effects

i

it

5
e
B
[

= Rose petals and lotus leaves are both superhydrophobic;
however, droplets roll off lotus leaves but do not roll off

rose petals
A =1

Feng et al., Langmuir 24(8):4114-4119, 2008. ©2010 | AJ. Hart | 34



Solid

Petal (Cassie impregnating wetting state) Lotus (Cassie’s state)

Figure 3. Schematic illustrations of a drop of water in contact with the petal of a red rose (the Cassie impregnating wetting state) and a
lotus leaf (the Cassie’s state).

Feng et al., Langmuir 24(8):4114-4119, 2008. ©2010 | AJ. Hart | 35
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Figure 1. SEM images of carbon nanotube forests. (a) As-grown
forest prepared by PECVD with nanotube diameter of 50 nm and
a height of 2 um. (b) PTFE-coated forest after HFCVD treatment.

and (c) an essentially spherical water droplet suspended on the
PTFE-coated forest.

Lau et al., Nano Letters 3(12):1701-1705, 2003. ©2010 | AJ. Hart | 36
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Apparent contact angle of microstructures
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Tuteja et al., MRS Bulletin 33:752-758, 2008.
Tuteja et al., PNAS 105(47):18200-18205, 2008. ©2010 | A.J. Hart | 37



