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Announcements m
» Project/video questions? L ‘

= \Video due next Mon; upload details soon
= HW3 due next Wed (Mar/17)
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Recap: top-down vs. bottom-up
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http://www.aist.go.jp/aist_e/aist_today/2007_23/nanotec/nanotec_02.html
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Templated self-assembly
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Figure 1. lllustration of some types of TSA systems. Characteristic
lengths (Lo) of crystalline materials, block copolymers, and colloid as-
semblies and the characteristic length (Ls) of the template are indicated.

Figure 2. A) Use of topography and dewetting of Au films to create or-
dered particle arrays [14]. Particles on a flat substrate have random in-
plane orientations, while particles on a topologically patterned substrate
are crystallographically oriented. The arrows indicate the [111] direction.
B-D) Effect of confinement on organization of colloidal particles depos-
ited by an electrophoretic method [17]. The order-disorder—order transi-
tion in the colloidal array depends on commensurability of particle diam-
eter and groove width. (Widths of the grooves: B) 2.22 um, C) 2.51 um,
D) 2.72 um.) Reprinted from [17]. E-H) Effect of incommensurability on
colloidal particles deposited by flow technique [18]. E,F) 2.5 pm polysty-
rene (PS) bead arrays within channels 5.0 and 5.8 um in width, respec-
tively. G,H) 1.75 um PS beads within channels 10.0 and 10.5 pm in
width, respectively. Reprinted from [18].

doi.wiley.com/10.1002/adma.200502651

©2010 | AJ. Hart | 4



Important considerations for synthesis and m

assembly

= Size and size distribution of nanostructures

= Process compatibility (chemistry, temperature)
= Defect density; purity

» Interface structure and profiles

= Specificity and strength of interactions with other
structures, substrate

= Alignment
= Registry
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Building blocks

Nanoclusters

Magic # s of atoms 100" s-1000’ s of atoms
<1 nm size ~1-100 nm diameter

2-D

O BB

Nanowires = Nanotubes Nanosheets
Filled Hollow ~1 atom thick
~1-100 nm dia, up to mm long and beyond! ©2010 | A, Hart | 6
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The best way to make monodisperse nanostructures is
to employ a large number of very small people.
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Today s agenda

= Overview of synthesis methods for nanoparticles,
nanowires, nanotubes

= Thermodynamic model of homogeneous nucleation

- Wednesday: implications/applications in nanoparticle
synthesis; evolution of size distributions

- Monday: implications/applications in nanotube/wire
synthesis; integration with top-down methods and device
fabrication
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Readings for lectures 13-15

Nominal: (ctools) L
= AJH written notes (one file for today and wednesday)

= Sugimoto, “Preparation of monodispersed colloidal particles”
®= Through page 73, needed as backup to lecture notes only

= Peng et al., “Kinetics of 1I-VI and IlI-V colloidal semiconductor
nanocrystal growth: focusing of size distributions”

» Kodambaka et al., “Growth kinetics of Si and Ge nanowires”

= Hochbaum et al., “Controlled growth of Si nanowire arrays for
device integration”

= Terranova et al., “The world of carbon nanotubes: an overview of
CVD growth methodologies”

= Wirth et al., “Diffusion- and reaction-limited growth of carbon
nanotube forests”
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Readings for lectures 13-15

Extras: (ctools)

= Burda et al., excerpt from “Chemistry and properties of
nanocrystals of different shapes”

- More detail on chemical methods of NP synthesis, self-assembly

= Xia et al., “One-dimensional nanostructures: synthesis,
characterizaton, and applications”
— Broad overview of top-down and bottom-up NW/NT synthesis

= Wagner and Ellis, “The vapor-liquid-solid method of crystal
growth and its application to silicon”

* Hofmann et al., “Ledge-flow-controlled catalyst interface
dynamics during Si nanowire growth”

= Harutyunyan et al., “Preferential growth of single-walled
carbon nanotubes with metallic conductivity”
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Start: nucleate!
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Nucleate and grow
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Nucleate then grow

= This could be the final nanostructure, or an intermediate

nanostructure for a subsequent process (e.g., NT/NW growth)
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Liquid-phase nanoparticle synthesis
Strategy to separate nucleation and growth events
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Figure 1 (4 Cartoon depicting the steges of nucleation and growth for the preparation gr owth steps
of monedigperse NCs in the framework of the La Mer model. As NCs grow with ime.
a st senes of NCs may be solatad by penodically remeving aliquots from the reascbion
vessel. |8 Representation of the simp ke synthetic appamius emploved in the prepamton

of monedisperse NC sumples.
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Gas-phase nanoparticle synthesis
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FIGURE 4.1 Typical apparatus for producing nanoparticles from supersaturated vapor.,™
Reprinted with permission from A S Edelstein and R C Cammarato. (eds), Nanoparticles.
Synthesis, Properties and Applications, 10P Publishing, Philadelphia, (1996).
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Thin-film deposition and growth
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thin film structure is given by thin film properties and
deposition parameters. The intluence of deposition variables
on structural features is typically depicted in (empirical)
structure-zone diagrams or models (SZM)
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Formation of nuclei by adsorption and diffusion on the substrate

DEPOSITION DESORPTION
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Different modes/models of nucleation and growth based on film-
substrate wetting
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Nucleation of

Ag on NaCl
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Vapor-solid (VS) nanowire growth
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ZnO NW growth: vapor transfer method
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Figure 3. A schematic diagram of the experimental apparatus for growth of o>
by the solid—vapour phase process.

In Vapor
ZnOgaiiay + Crsolia) < ZN(vapour) + COrasy (T > 970°C) / \

(1)
2C + 0, = 2CO 2) Ei\} I
2C0 + 0, = 2CO, (3) oy = g —"'. —
27n + 0, = 2710, (4) A il e

P. Yang, et al., Adv. Funct. Mat. 12, 323 (2002)
S. H. Dalal, et al., Nanotechnology 17, 4811 (2006) ©2010 | AJ. Hart | 20




Chemical vapor deposition (CVD)

[ volatile gas(es)

g

Gas Stream are introduced,
— — O which
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©]0 ©) when
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? B ? excited and

produce non-

volatile film

Steps involved in a CVD process:

1.Transport of reactants

2.Reactant diffusion from main gas stream through boundary layer
3.Adsorption of reactants

4.Surface processes (e.g., migration, reaction, incorporation)

5.Desorption of byproducts; diffusion and transport away...

S. Hoffman (Cambridge) ©2010 | AJ. Hart | 21



CVD on silicon wafer substrates

(silicon wafer)

SILICON WAFER
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CVD system with horizontal tube furnace
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Catalytic growth of NWs/NTs and assemblies

Nanostructure

Precursor

- can also spray catalyst in gas
phase, etc ...more examples later
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Making catalysts from thin films
Deposit a catalyst film ——> Anneal to form particles Lm

Fe (1 nm)
A|203 (10 nm)
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A catalyst particle is a small substrate and a

small reactor
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Figure 2. Observations of step

edges on nanoscale particles during
(a) SINW growth (Hofmann et al.)
and (b) CNT growth (Zhu et al.)
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Many variables...

INPUTS

Catalyst and support:

- Material and composition
- Particle size

- Chemical state (annealing)
- Surface roughness

Reaction conditions:

- Substrate temperature

- Pressure

- Reactant composition

- Buffer/etchant composition

- Reactant pre-treatment

- Supply rates

- Flow profiles/dynamics

- Time and temporal adjustment
- Forces acting during growth

OUTPUTS
Properties:

> Diameter and structure
- Length, growth rate, lifetime
- Defect density

Model:
ONE nanostructure

Fy(z1)
L(Y) QR R

>

x(2.1)

—

Manufacturing:
MANY nanostructures

A

Control
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Types of nucleation
= Homogeneous nucleation: solute molecules within a liquid L
combine to produce nuclei; no solid interface present

= Heterogeneous nucleation: A nucleus forms on a pre-existing
surface of another material (e.g., impurity, vessel wall)

= Secondary nucleation: Occurs at a pre-existing “seed” of the
same material, or by aggregation of particles
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Thermodynamic model of homogeneous
nhucleation
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Critical cluster sizes for some metals
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Example: size distributions of nanoparticles  §*
by chemical synthesis Rl | [t
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Monodispere CdSe

Figure 3. Transmission electron micrograph of 8.5 nm diameter CdSe
nanocrystals prepared by the method of distribution focusing.

Peng et al., Journal of the American Chemical Society 120:5343, 1998. ©2010 | AJ. Hart | 38



Monitoring particle size by optical
absorption and emission
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Figure 1. Room-temperature PL and absorption spectra from the sample
of CdSe nanocrystals. Note that a secondary injection of monomer occurs
at 190 min.

Peng et al., Journal of the American Chemical Society 120:5343, 1998. ©2010 | AJ. Hart | 39



Results: size broadening and focusing

CdSe InAs
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Figure 2. Left: The mean size and the size distribution extracted from
the data in Figure 1. Right: The same data extracted from the PL for a
synthesis of InAs. Arrows indicate injections.

Peng et al., Journal of the American Chemical Society 120:5343, 1998. ©2010 | AJ. Hart | 40



Similarities in NW growth m
. 2

NN : = How does the NW length
----- U Lo change with time?
Adsorption = How does the NW

diameter change with
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Nanowire growth
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Competition and size evolution

™G
\AMMG  \ Competition for

s > ,
: material supply

- Ostwald ripening

Borgstrom et al., Nature Nanotechnology 2:541, 2007. ©2010 | AJ. Hart | 42



