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Announcements

» Project/video questions?
= Video due next Mon (Mar/15)
= HW3 due next Wed (Mar/17)
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= Bulk vs. surface
= Single-step vs. multi-step

= Analogies/similarities to thin-film
deposition and growth
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Nanowire growth
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Start: nucleate!

©2010 | AJ. Hart | 4



Nucleate and grow
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Nucleate then grow
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Building blocks

Nanoclusters

Magic # s of atoms 100" s-1000’ s of atoms
<1 nm size ~1-100 nm diameter

2-D

O BB

Nanowires = Nanotubes Nanosheets
Filled Hollow ~1 atom thick
~1-100 nm dia, up to mm long and beyond! ©2010 | A, Hart | 7



Today s agenda

= Diffusion-limited and reaction-limited growth regimes m

= Model of size evolution (broadening and focusing) of
nanoparticles in solution

= Examples of other chemical methods of nanoparticle
synthesis

- Monday: nanotube/nanowire synthesis; integration with
top-down methods and device fabrication

©2010 | AJ. Hart | 8



Readings for lectures 13-15

Nominal: (ctools)
= AJH written notes (one file for today and wednesday)

= Sugimoto, “Preparation of monodispersed colloidal particles”
= Through page 73, needed as backup to lecture notes only

= Peng et al., “Kinetics of II-VI and IlI-V colloidal semiconductor
nanocrystal growth: focusing of size distributions”

» Kodambaka et al., “Growth kinetics of Si and Ge nanowires”

= Hochbaum et al., “Controlled growth of Si nanowire arrays for
device integration”

= Terranova et al., “The world of carbon nanotubes: an overview of
CVD growth methodologies”

= Wirth et al., “Diffusion- and reaction-limited growth of carbon
nanotube forests”
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Readings for lectures 13-15

Extras: (ctools)

= Burda et al., excerpt from “Chemistry and properties of
nanocrystals of different shapes”

- More detail on chemical methods of NP synthesis, self-assembly

= Xia et al., “One-dimensional nanostructures: synthesis,
characterizaton, and applications”
— Broad overview of top-down and bottom-up NW/NT synthesis

= Wagner and Ellis, “The vapor-liquid-solid method of crystal
growth and its application to silicon”

* Hofmann et al., “Ledge-flow-controlled catalyst interface
dynamics during Si nanowire growth”

= Harutyunyan et al., “Preferential growth of single-walled
carbon nanotubes with metallic conductivity”
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Critical size for nucleation
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Control of size distribution by changing the
supersaturation

CdSe InAs
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The number of particles is constant during focusing (SD
decreasing) and decreases during defocusing (ripening; SD
increasing)

Peng et al., Journal of the American Chemical Society 120:5343, 1998. ©2010 | AJ. Hart | 12



Evolution of precursor concentration during
nucleation and growth (LaMer, 1950)
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Fig. 1. (a) The LaMer model for monodispersed particle formation (Cg:
golubility; C¥pjn: minimum concentration for nucleation; C¥pay! maximum
concentration for nucleation; I: prenucleation period; II: nucleation period; IIL:
growth period) (ref. 15). (b) Precipitation rate for nucleation and growth as
a function of solute concentration, where the growth curve is the one for a
given amount of seed particles.

= Concentration changes with time as monomer is depleted
= Now we’ Il see how the size distribution changes with the conditions
Sugimoto, Adv. Colloid Interface Science 28:65, 1987. ©2010 | AJ. Hart | 13



Diffusion-limited vs. reaction-limited

= Diffusion-limited: L
= The reaction rate is controlled by the rate of transport of the reactants

through the reaction medium, e.g., a solution for nanocrystal growth,
or...

= Test: does the growth rate change when the solution is stirred?

= Reaction-limited:

= The reaction rate is controlled by the rate of reaction at the surface, e.g.,
the adsorption/reaction at the surface
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Modeling diffusion to the particle
= Without considering the chemical details of the reaction (e.g., L ‘

what monomers, how they adsorb/react at the surface)
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Fig. 2. (a) The profile of solute concentration in a diffusion layer. {(b) The
diffusion layer around a spherical particle.

C, = bulk concentration of precursor (monomer) in solution

C. = precursor concentration at the interface

C. = solubility of the particle (concentration that would be in
equilibrium with solution if particle were at critical size; this depends on

Suéiﬁ&la, Adv. Colloid Interface Science 28:65, 1987. ©2010 | A.J. Hart | 15
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Theory: size broadening and focusing
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Fig. 3. [dr/dt]/Kp or [dln(ar)/dt]/Kp as a function of r for
diffusion-controlled growth with the infinite diffusion layer; the size
distribution is broadened for r < 2r¥, while narrowed for r > 2rk.

Sugimoto, Adv. Colloid Interface Science 28:65, 1987. ©2010 | AJ. Hart | 23



Results

= Strategy: to focus, use concentration just below critical
threshold for nucleation relative to the current mean size
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Peng et al., Journal of the American Chemical Society 120:5343, 1998. ©2010 | AJ. Hart | 24



NP synthesis by thermal decomposition of
metal-oleate complexes

oleic acid
(foundine.g.,
Metal ~70°C Metal-oleate olive oil)
chioride + Na-oleate ——> complex | ¥ 28 x
o
= 240 °C nucleation
=~ 320 °C growth
Metal—oleate Thermal decomposition
complex in high boiling solvent
\

Figure 1 The overall scheme for the ultra-large-scale synthesis of
monodisperse nanocrystals. Metal-oleate precursors were prepared from the
reaction of metal chlorides and sodium oleate. The thermal decomposition of the
metal-oleate precursors in high boiling solvent produced monodisperse nanocrystals.

Park et al., Nature Materials 3:891, 2004. ©2010 | AJ. Hart | 25
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In situ monitoring of thermal decomposition

" Fe(oleate),: one ligand dissociates at 240 °C (nucleation) L
and the other ligands dissociate at =320 °C (growtn)
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Snapshots of growth

310°C

8~11nm 12 nm 12 nm 12 nm

magnification, bottom images: higher magnification) of the iron oxide nanoparticles taken
at various reaction time intervals.

Park et al., Nature Materials 3:891, 2004. ©2010 | AJ. Hart | 27



Effect of long nucleation time

Figure S9 TEM images and electron diffraction patterns of the products after
reacting iron-oleate complex in octadecene (a) at 260 °C for 1 day, (b) at 260 °C for
3 days, (c) at 240 °C for 3 days, and (d) at 200 °C for 3 days.
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Controlling size: change solvent (boiling pt)

and acid concentration
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Figure 2 12-nm magnefite nanocrystals. The TEM image clearly demonstrates
that the nanocrystals are highly uniform in particle-size distribution. Inset is a
photograph showing a Petri dish containing 40 g of the monodisperse magnetite
nanocrystals, and a US one-cent coin for comparison.

Park et al., Nature Materials 3:891, 2004.

Figure 3 TEM images (a—e) and HRTEM images (f-j) of monodisperse iron oxii
nanocrystals. (a, f) 5nm; (b, g) 9nm; (¢, h) 12 nm; (d, i) 16 nm; and (e, j) 22 nm
nanocrystals. TEM images showed the highly monodisperse particle size distributior
and HRTEM images revealed the highly crystalline nature of the nanocrystals.
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Different materials: change metal salt
precursor

Fe

Park et al., Nature Materials 3:891, 2004. ©2010 | AJ. Hart | 30



Anisotropic structures: CdTe tetrapods
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Manna et al., Nature Materials 2:382-385, 2003. ©2010 | AJ. Hart | 31



Anisotropic structures: CdTe tetrapods

Increasing arm length

Cd/Te ratio
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Is precise focusing enough? No! m
N i

— Recall secondary nucleation (aggregation)

" Inhibit aggregation by, for example:
» Adding a capping layer (e.g., surfactant) at a critical size

= Double-layer repulsion, i.e., stabilize or precipitate when the
particles are charged

- More to come when we discuss dispersion and self-assembly
in solution
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Onward to NW/NT growth

= What is the role of the catalyst?
= How are atoms incorporated?

=" How does the NW length change with time?
=" How does the NW diameter change with time?
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Nanowire growth
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